5

DUAL VIDEO 6dB AMPLIFIER WITH 75Ω DRIVER

■ GENERAL DESCRIPTION

NJM2267 is a dual video 6dB amplifier with 75 Ω drivers for S-VHS VCRs, HI-BAND VCRs, etc..Each channel has clamp function that fixes DC level of video sighal and 75 Ω drivers to be connected to TV monitors directly. Further more it has sag corrective circuits that prevent the generation of sag with smaller capacitance than ever.

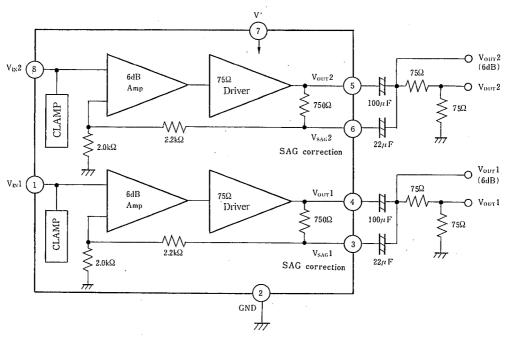
Its operating supply voltage is 4.85 to 9V and bandwidth is 7MHz.

■ PACKAGE OUTLINE

NJM2267D

NJM2267M

NJM2267V


■ FEATURES

- Wide Operating Voltage (4.85∼9.0V)
- Dual Channel
- Internal Clamp Function
- Internal Driver Circuit For 75 Ω Load
- SAG Corrective Function
- Wide Frequency Range (7MHz)
- Low Operating Current 14.0mA (Dual)
- Package Outline DIP8, DMP8, SSOP8
- Bipolar Technology

APPLICATIONS

· VCR, Video Camera, TV, Video Disc Player

BLOCK DIAGRAM

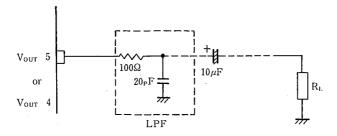
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETEŖ	SYMBOL	RATINGS	UNIT
Supply Voltage	· V*	10	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
Operating Temperature Range	Topr	-40~+85	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^{+}=5V, Ta=25\pm2^{\circ}C)$

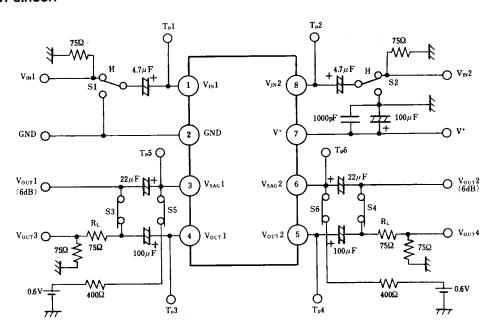

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	lcc	No Signal	_	14.0	18.2	mA
Voltage Gain	Gv	V _{IN} =1MHz, 1V _{P-P} Sinewave	5.7	6.2	6.7	dB
Frequency Characteristic	Gr	V _{IN} =1V _{P-P} , Sinewave, 7MHz/1MHz	_ ;		±1.0	dB
Differentail Gain *	DG	V _{IN} =1V _{P-P} , Staircase	—	1.0	3.0	%
Differentail Phase *	DP	V _{IN} =1V _{P-P} , Staircase		1.0	3.0	deg
Crosstalk	CT	V _{IN} =4.43MHz, 1V _{P-P} , Sinewave		70	_	dB
Gain Offset	Gсн	$V_{IN}=IMHz$, IV_{P-P} , $G_{CH}=V_{OUT}I-V_{OUT}2$	—	<u> </u>	±0.5	dB
Input Clamp Voltage	VCL		1.79	1.91	2.03	V
SAG Terminal Gain	G _{SAG}		35	45		dB

■ APPLICATON

Oscillation Prevention

It is much effective to insert LPF (Cutoff Frequency 70MHz) under light loading conditions (R_L≫1kΩ).

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

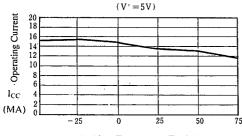


■ TERMINAL FUNCTION

 $(V^+=5.0V, Ta=25^{\circ}C)$

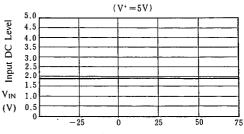
IN No.	PIN NAME	SYMBOL	EQUIVALENT CIRCUIT	FUNCTIONS
1	Input Clamp Terminal	Vini	V* 300 \(\alpha \)	Input terminal of IV _{P-P} composite signal or Y signal. Clamp level is 1.9V
2	GND	GND		Ground
3	SAG correction	V _{SAGI}	V*	SAG caused by a coupling capacitor of the output can be prevented by connecting this tarminal with the output terminal through an external capacitor.(see block diagram) When SAG correcting function is not necessary, this terminal must be connected with pin "4" directly.
4	Video Output1	Vouti	2.2k 750 3mA	Output terminal that can drive 75Ω line.
5	Video Output2	V _{OUT2}	2.2k 750 5	Output terminal that can drive 75Ω line.
6	SAG correction	V _{SAG2}	2.2k 6 750 3mA	SAG caused by a coupling capacitor of the output can be prevented by connecting this terminal with the output terminal though an external copacitor.(see block diagram) When SAG correcting function is not necessary, this terminal must be connected with pin "5" directly.
7	V+	V+		Supply Voltage
8	Input Clamp Terminal	VIN2	V·	Input terminal of 1V _{P-P} composite signal or Y signal. Clamp level is 1.9V.

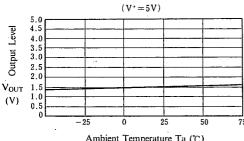
■ TEST CIRCUIT



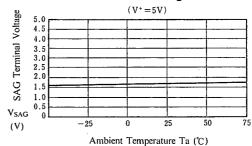
■ TEST METHODES

	ara mor	SWITCH CONDITIONS					NS	CONDITIONS
PARAMETER	SYMBOL	SI	S2	S3	S4	S5	S 6	CONDITIONS
Supply Current	Icc	Н	Н					7PIN Sink Current
Voltage Gain	Gv	Н	Н	ON	ON			V_{OUT1}/V_{IN1} , V_{OUT2}/V_{IN2} at $V_{IN1}(V_{IN2})=1$ MHz, $1V_{P-P}$, Sinewave
Frequency Characteristic	Gf	Н	н	ON	ON			G_{V1M} ; Voltage Gain at $V_{IN1}(V_{IN2})=1$ MHz, $1V_{P-P}$ G_{V10M} ; Voltage Gain at $V_{IN1}(V_{IN2})=1$ 0MHz, $1V_{P-P}$ $G_f=G_{V10M}-G_{V1M}$
Differential Gain	DG	Н	Н	ON	ON			Measuring V _{OUT3} at V _{IN1} =Staircase Signal
Differential Phase	DP	н	Н	ON	ON			Measuring V _{OUT3} at V _{IN1} =Staircase Signal
Crosstalk	СТ	Н	L	ON	ON			V _{OUT2} /V _{OUT1} at V _{IN1} =4.43MHz, 1V _{P.P.} Sinewave V _{OUT1} /VIN2 at V _{IN2} =4.43MHz, 1V _{P.P.} Sinewave
Gain Offset	G _{CH}	Н	Н	ON	ON			$G_{V1} = V_{OUT1}/V_{IN1}, G_{V2} = V_{OUT2}/V_{IN2}$ $G_{CH} = G_{V1} - G_{V2}$
Input Clamp Voltage	V _{CL}	Н	Н					Measuring at TP1(TP2)

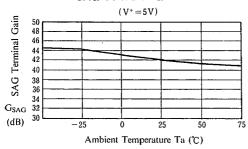

TYPICAL CHARACTERISTICS


Ambient Temperature Ta (°C)

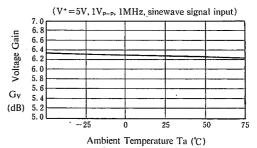
Input DC Level vs. Ta

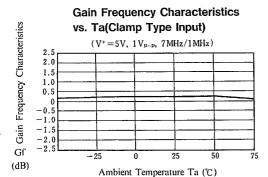

Ambient Temperature Ta (℃)

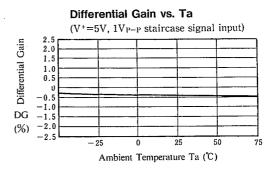
Output DC Level vs. Ta

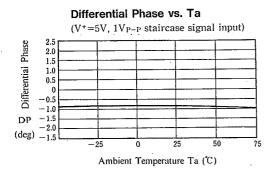


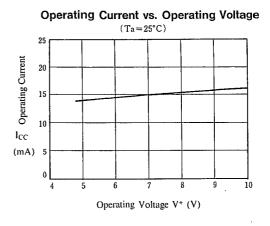
Ambient Temperature Ta (°C)

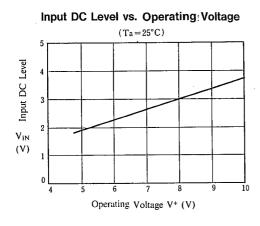

SAG Terminal Voltage vs. Ta

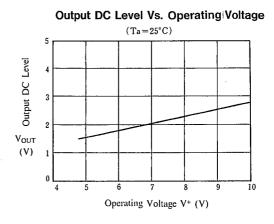

SAG Terminal Gain vs. Ta

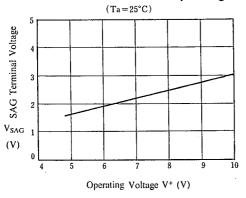


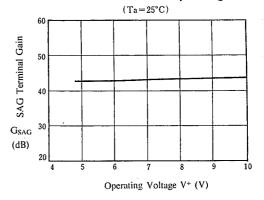

Voltage Gain vs. Ta(Clamp Type INput)



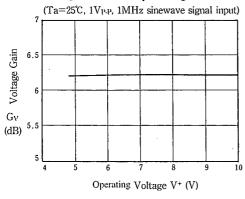

■ TYPICAL CHARACTERISTICS

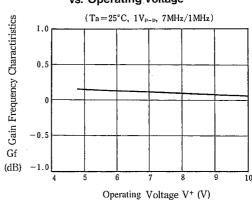


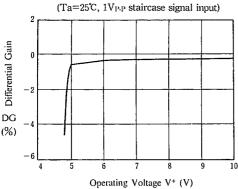


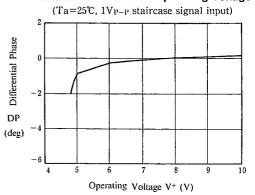

5

■ TYPICAL CHARACTERISTICS

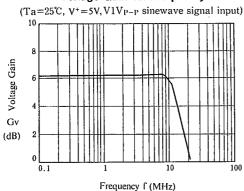

SAG Terminal Voltage vs. Operating Voltage


SAG Terminal Gain vs. Operating Voltage

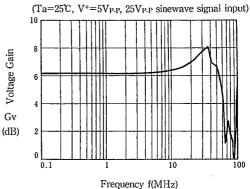

Voltage Gain vs. Operating/Voltage


Gain Frequency Characteristics vs. Operating Voltage

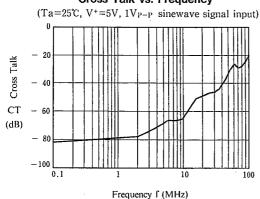
Differential Gain vs. Operating Voltage

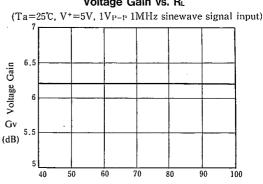


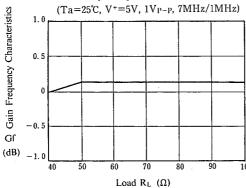
Diffrential Phase vs. Operating Voltage



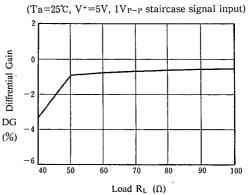
■ TYPICAL CHARACTERISTICS


Voltage Gain vs. Frequency

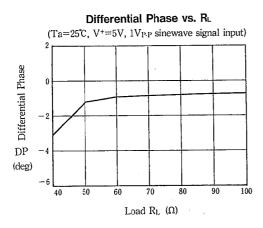

Small Signal Voltage Gain vs. Frequency

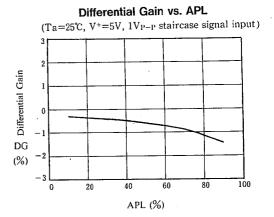

Cross Talk vs. Frequency

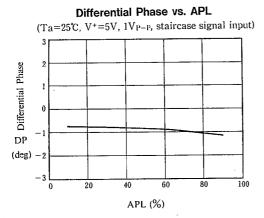
Voitage Gain vs. RL



Gain Frequency Characteristics vs. RL




Differential Gain vs. RL


Load R_L (Ω)

■ TYPICAL CHARACTERISTICS

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.